

- Breakfast Meeting -

Smart ICT: Gap Analysis between Scientific Research and Technical Standardization in the field of Cloud Computing

Chao LIU

Feb 2020

Overview of the EU Cloud Market

- From 2014 to 2018, the use of Cloud Computing in the EU increased particularly in large enterprises
- Specifically, 24.5% of enterprises in Luxembourg used Cloud Computing in 2018 (26% EU-wide)

Top Challenges

TOP CHALLENGES HOLDING BACK CLOUD PROJECTS

White Paper: Data Protection and Privacy in Smart ICT - Research and Standardization (2018)

Key Objectives

- Overview of data protection and privacy in Cloud Computing
- Clarifying the fundamentals of Cloud Computing
- Exploring the links between research and standardization, namely: frameworks of trust, interoperability and portability, terminology

Technical Report: Smart ICT - Gap Analysis between Research and Standardization in Cloud Computing (2019)

Research Directions

1. Security and Privacy Controls

- The main task of access control is to export digital identities of end users and transfer the identity attributes to different computers to guarantee a secure environment for users.
- Various application scenarios request flexible control on cloud data access based on data owner policies and application demands.

2. Inherent Properties

- Cloud computing paradigm enables multi-tenancy, multiple cloud users share the virtualized resources and the physical devices.
- The dynamic of multi-tenancy further intensifies the complexity and brings more security challenges.

3. Data Storage and Processing

- · Users' data is stored in distributed cloud services
- A third party service provider is allowed to offer clients a database service on the cloud through Database-as-a-Service.

4. Billing and Metering

 Cloud services rely on the "pay-as-you-go" model, but most cloud services providers, collecting users' data in order to evaluate their pricing model, risks for users' data protection and privacy issues are involved.

5. Network Slicing

New scenario for the adoption of cloud computing

- The Slice Provider (SP) owns the physical resource and multiple Slice Customers (SCs) serve their end users with various network slices which created by SP
- End-to-end network slicing has been viewed as a key enabler for 5g

Research Directions: Network Slicing in 3GPP

Slice/Service type	Characteristics
eMBB (enhanced Mobile Broadband)	High capacity
URLLC (ultra- Reliable Low Latency Communications)	Low latency, high reliability, high availability
MIoT (Massive IoT)	Fast response, high reliability, low latency

Top Threats and Research Efforts

LUXEMBOURG

- 1. Lack of cloud security architecture and strategy
- 2. Misconfiguration and inadequate change control
- 3. Insufficient identity, credential, access and key managemen
- 4. Account hijacking
- 5. Abuse and nefarious use of cloud services
- 6. Weak control plane
- 7. Metastructure and applistructure failures
- 8. Insecure interfaces and APIs
- 9. Data Breaches
- 10. Insider threat
- 11. Limited cloud usage visibility

Analysis of Two Threats

Top Threat	Research Aspect	Research Effort	
1. Lack of Cloud Security, Architecture and Strategy	1) Attribute-Based Encryption		
		2) Proxy Re-Encryption	
9. Data Breaches Dat Pro	Data Storage and Processing	1) Intelligent Cryptography Approach	
		2) Fuzzy Authorization	

Major Standardization Activities

Gap Analysis

Security and Privacy Controls in the Cloud	 Lack of practical solutions to control cloud data access based on trust and reputation 		ISO/IEC 27001,TR 23186:2018 ISO/IEC 17789 Under-development: Little ongoing efforts
Inherent Properties of Cloud Computing	 The interactions between different cloud service providers and cloud partners has not been explored and described in detail 	-{	ISO/IEC 19941 Under-development: TR 23187
Data stored and processed in the Cloud	 Lack of global regulations 		GDPR ISO/IEC 19944:2017/PDAM 1 ISO/IEC AWI 23751 ISO/IEC PDTR 23188
Metering and Billing for Cloud Service	 Lack of standardized and transparent metering indicator and billing principle 		PDTR 23613 TR 23951, DIS 22624
General	 A standardized and uniform terminology and common description of cloud services Update reference architecture The need for simplifying SLAs. 		ISO/IEC 19086 CD 22123 ISO/IEC 19086-1
Network Slicing	 There are misinterpretations and confusing in terms of its concept, technology, applications & pricing models. 		3GPP TS 23.501 3GPP TS 23.502 3GPP TS 23.503 3GPP TR28.801 3GPP TR28.530

- The rapid technology developments require continuous standards updating efforts
- New working groups or joint working groups should be established to cope with the above
- For CSPs, guaranteeing users' data security and privacy is a key issue and requires complex prospective considerations, including constant attention and adaptation to the market
- Sustained attention and efforts are needed as the trust relationship among users and service providers has huge market importance
- The main task for building trust mechanisms in Cloud Computing is to establish the architecture for sensitive data with encryption mechanism

Thank you for your Attention

